欧几里得算法

来自吾萌百科
(重定向自辗转相除法

欧几里得算法又称辗转相除法,是求最大公约数的算法。

[math]\displaystyle{ \forall a,b, \in N,b\not = 0, gcd(a,b) = gcd(b, a \;\mathrm{mod}\; b) }[/math] [math]\displaystyle{ }[/math]

证明

  • [math]\displaystyle{ a \lt b }[/math]
    [math]\displaystyle{ gcd(b, a \;\mathrm{mod}\; b) = gcd(b, a) = gcd(a, b) }[/math] ,命题成立
  • [math]\displaystyle{ a \geq b }[/math]
    不妨设 [math]\displaystyle{ a=q*b+r }[/math],其中 [math]\displaystyle{ 0 \leq r \lt b }[/math]。显然[math]\displaystyle{ r=a \;\mathrm{mod}\; b }[/math]
    对于 a,b 的任意公约数d,因为 [math]\displaystyle{ d|a,d|q*b }[/math],故 [math]\displaystyle{ d|(a-qb) }[/math],即 [math]\displaystyle{ d|r }[/math],因此d也是b,r的公约数,反之亦成立。
    故a,b的公约数集合与 [math]\displaystyle{ b,a \;\mathrm{mod}\; b }[/math] 的公约数集合相同。于是它们的最大公约数自然也相等。

证毕。

实现

int gcd(int a, int b) {
	return b ? gcd(b, a % b) : a;
}

注释

// 计算两个整数的最大公约数
int gcd(int a, int b) {
    // 如果b不为0,则递归调用gcd函数,参数为b和a除以b的余数
    return b ? gcd(b, a % b) : a;
}

参考资料

  1. 算法竞赛进阶指南,李煜东,143页